Estimating variable structure and dependence in multitask learning via gradients
نویسندگان
چکیده
منابع مشابه
ESTIMATING VARIABLE STRUCTURE IN MULTI-TASK LEARNING Estimating variable structure and dependence in multi-task learning via gradients
We consider the problem of learning gradients in the supervised setting where there are multiple, related tasks. Gradients provide a natural interpretation to the geometric structure of data, and can assist in problems requiring variable selection and dimension reduction. By extending this idea to the multi-task learning (MTL) environment, we present methods for simultaneously learning variable...
متن کاملMultitask Learning via Mixture of Linear Subspaces
We propose a probabilistic generative model for multitask learning that exploits the cluster structure of the task parameters, and additionally imposes a low-rank constraint on the set of task parameters within each cluster. This leads to a sharing of statistical strengths of multiple tasks at two levels: (1) via cluster assumption, and (2) via a subspace assumption within each cluster. Our wor...
متن کاملLearning Coordinate Covariances via Gradients
We introduce an algorithm that learns gradients from samples in the supervised learning framework. An error analysis is given for the convergence of the gradient estimated by the algorithm to the true gradient. The utility of the algorithm for the problem of variable selection as well as determining variable covariance is illustrated on simulated data as well as two gene expression datasets. Fo...
متن کاملLeveraging Domain Knowledge in Multitask Bayesian Network Structure Learning
Network structure learning algorithms have aided network discovery in fields such as bioinformatics, neuroscience, ecology and social science. However, challenges remain in learning informative networks for related sets of tasks because the search space of Bayesian network structures is characterized by large basins of approximately equivalent solutions. Multitask algorithms select a set of net...
متن کاملLearning Gradients: Predictive Models that Infer Geometry and Statistical Dependence
The problems of dimension reduction and inference of statistical dependence are addressed by the modeling framework of learning gradients. The models we propose hold for Euclidean spaces as well as the manifold setting. The central quantity in this approach is an estimate of the gradient of the regression or classification function. Two quadratic forms are constructed from gradient estimates: t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2010
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-010-5217-4